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Abstract. In this paper, we introduce a new family of nonlinear filters based on the Myriad
operator. The proposed approach introduces recursivity into the filtering operation where previous
filter outputs are fedbacked into the filtering operation to conform an observation window that
has input samples and previous filtered values leading thus to a recursive Weighted Myriad filter
(RWMy). The proposed filtering structure is equipped with a tunning parameter that allow to
set the degree on impulsiveness rejection capability. Thus, as that parameter goes to infinity the
RWMy reduces to the well-known Infinity Impulse response (IIR) filter which has been proven
to outperform the finite impulse response (FIR) filter. Furthermore, an adaptive optimization
algorithm based on equation error formulation is also proposed for the design of RWMy where an
absolute error cost function is minimized at each iteration. Extensive computer simulations show
that the proposed approach outperforms the no recursive version much like the IIR outperforms
the FIR filters.

Keywords: Recursive weighted myriad, Maximum likelihood, Equation error formulation, Adap-
tive filter theory, Nonlinear filter.

1 INTRODUCTION

It is well–known that signal filtering in real–environment scenario where signal’s contaminations
exhibit a higher impulsiveness than that described by the Gaussian noise model demands the use
of a robust filtering operation suitable for noise modeled by heavy-tailed distribution. Weighted
Myriad Filter (WMyF), for instance, emerges as a robust nonlinear filtering approach that is
derived as a generalization of the sample myriad [1]. More precisely, given N observation samples
{xi}Ni=1 and weights {wi}Ni=1 the weighted myriad is the maximum likelihood estimator of location
parameter for the class of Cauchy distribution — a particular case of the family of α–stable
distribution. WMyF takes advantage of a linearity parameter, that, in a tunning fashion way, adds



to the filtering operation the capability to adapt to several degrees of impulsive noise rejection
[1, 2]. Following this line of thought, in this paper we propose a new recursive weighted myriad
filter under the framework of a noncausal system where given N observation input samples {xi}Ni=1

weighted by {gi}Ni=1 and M previous filtered outputs {yj}Mj=1 with weights {hj}Mj=1 the recursive
WMyF outputs the maximum likelihood estimation for the location parameter fo the Cauchy
distribution of the joint data samples {xi|Ni=1, yj|Mj=1} weighted, respectively, by {gi|Ni=1, hj|Mj=1}.
Much like recursive linear filters (IIR) offer several advantages over the nonrecursive counterpart
(FIR filter), the proposed recursive WMyF also exhibit superior performance than the one found
with nonrecursive WMyF [3]. Furthermore, equipped with tunning parameters the proposed
filtering approach can be suitably adapted to different degree of impulsiveness of the background
noise. However, the fact that the output of a Myriad based estimator is restricted to the dynamic
range of the input samples affects the performance of the new filtering framework leading to
an undesirable attenuation of the filter outputs [1]. To overcome this apparent limitation the
previous filtered output are scaled as they are introduced in the Myriad operation avoiding thus the
attenuation on the filter’s output. Furthermore, we propose an adaptive optimization algorithm for
the design of this new family of nonlinear filter, under the framework of equation error formulation
where the previous filter outputs are replaced by the previous desired samples leading to a two–
input single output system during the learning stage. The performance of the proposed approach
is tested in several signal processing tasks that involve the design of frequency selective filters. It
is shown that the proposed approach yields much better performance than the linear counterpart
(IIR) and it has similar performance than the WMyF at a much lower computational cost.

2 PRELIMINARY BACKGROUND

Impulsive noise in real–environment scenario can be statistical characterized by heavier–than–
Gaussian tail distribution. One of the statistical model most widely used is the α-stable distri-
bution family supported, perhaps, by the Generalized Central Limit Theorem. A member of this
distribution family that is of particular interest is the Cauchy distribution since it is the only
heavy tail distribution with close form expression for the probabilistic density function (pdf) for
which an estimation of parameter location has been derived [4]. To be more precise, let’s model the
observation sample as xi = θ+ηi, i = 1, 2, . . . , N , where the common parameter θ is a unknown lo-
cation parameter to be estimated and ηi represents independent and identically distributed (i.i.d.)
impulsive noise added to the signal of interest. By involving the maximum likelihood estima-
tion (MLE) approach, the signal of interest can be estimated as θ̂ = arg max

∏N
i=1 fη(xi − θ),

where fη(x) is the distribution function followed by the additive noise. That is, for the Cauchy
distribution f(x) = (γ/π)[1/(γ2 + x2)], where γ is the dispersion parameter of the distribution.

It has been shown in [1] that the MLE of location parameter is given by the myriad operator.
That is

θ̂k = arg min
θ

N∑
i=1

log
[
k2 + (xi − θ)2

]
= myriad (xi|Ni=1; k). (1)

where k is a linearity parameter that gives to the myriad operator the capability of tuning its
impulsive rejection property, ranging from the mean operator of the observation sample for k →∞
to the mode operator of {xi|Ni=1} for k → 0.



A more general expression for the myriad operator that makes it suitable for a wide variety of
filtering processes is the weighted myriad (WMy) framework [4]. That is defined as

θ̂k = arg min
θ

N∑
i=1

log
[
k2 + |wi|(sgn(wi)xi − θ)2

]
= myriad (|wi| ◦ sgn(wi)xi|Ni=1; k) (2)

where |wi| ◦ sgn(wi)xi denotes the weighting process of the WMy framework [5], that allows to
capture the statistical relationships among different samples in an observation signal window where
the value given to wi is related to some degree of reliability of the ith sample [1].

Interestingly, if the contamination follows a Gaussian distribution1 the WMy behaves as a
linear FIR filter as the tunable parameter k becomes infinity. θ̂k→∞ =

∑N
i=1w

′
i · xi, where w′i =

wi/
∑N

i=1 |wi|.
Note that the filter output depends on the input observation samples xi and the filter weights

that defines the kind of filtering operation. A more general linear filtering approach that uses not
only input samples but also previous computed outputs to define the current filter output is the
class of filter with infinite impulse response (IIR), leading to recursive linear filter that has better
frequency response than the nonrecursive counterpart.

Much like FIR filters can be extended to a recursive version — the IIR filters. It is natural
to think that the weighted myriad filter (WMyF) which is supported by similar principles can be
extended to a richer filtering structure, namely the Recursive Weighted Myriad Filter (RWMyF).

3 RECURSIVE WEIGHTED MYRIAD FILTER

The introduction of previously computed outputs of the filtering in the Myriad framework leads
to the definition of a more robust filter with a high degree of accuracy and a reduced number of
parameters. Formally,

Definition 1.1: Given a set of observation samples {xi = x(n+ i)|N2
i=N1
} and a set of previous

computed outputs {yj = y(n−j)|Mj=1}, with weights {gi|N2
i=N1
} and {hj|Mj=1}, and linearity parameters

k1 y k2. The Recursive Weighted Myriad Filter is defined as

yk1,k2(n) = arg min
θ

N2∑
i=−N1

log
[
k21 + |gi|(sgn(gi)xi − θ)2

]
+

M∑
j=1

log
[
k22 + |hj|(sgn(hj)yj − θ)2

]
= myriad (|gi| ◦ sgn(gi)xi|N2

i=N1
; |hj| ◦ sgn(hj)yj|Mj=1; k1; k2). (3)

Figure 1(a) illustrates graphically the proposed filtering structure. Note that previous filter
outputs are fed back into the myriad operator to define a new output.

One of the strongest limitations of equation (3) and its output is the passiveness of the system
and the attenuation associated to this framework. To overcome this apparent limitation, it is pro-

posed the Scaled RWMy where the output is defined as y(n)(S) =
(∑N2

i=−N1
|gi|+

∑M
j=1 |hj|

)
θ̂k1,k2 ,

and allows to break the unconstrained representation given by (3) and its normalization.

1It is well-known that under MLE principle the optimum filtering operator for additive Gaussian noise is a linear
FIR kind of filter.
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Figure 1: (a) Recursive weighted myriad filter. (b) Adaptive training structure.

4 ADAPTIVE RECURSIVE WMy FILTERING ALGORITHM

Most applications that demand filtering operations need to design optimal values for their
weights. To this end, we adopt an adaptive approach where the RWMy filter’s weights are found
such that a cost function is minimized iteratively following the steepest descent approach. Taking
the mean absolute error (MAE) between the filter’s output y(n) and a desired signal d(n) as a
cost function, i.e.

J(g, h; k1, k2) = E{|y(n)(S)[n]− d[n]|} (4)

where E{·} represents the statistical expectation. However, taking the derivative of (4) with
respect to gi and hj with i = −N1,−N1 + 1, . . . , N2 and j = 1, 2, . . . ,M becomes mathematically
intractable since the recursive operation leads to successive application of chain rules. To overcome
this drawback we follow the equation error formulation where the previous filter outputs are
replaced by previous desired signal (y(n − i) = d(n − i)) breaking in that way the recursion and
leading to a two-input single output [ỹ(n)(S)] system without recursion as shown in Fig. 1(b).

Following the steepest-descendent approach, it can be shown taht the filter weights can be
update as

gi[n+ 1] = gi[n]− µsgn(e[n])

[
sgn(gi[n])θ̃k1,k2 [n] +

(
N2∑

i=−N1

|gi[n]|+
M∑
j=1

|hj[n]|

)
∂ỹk1,k2
∂gi

[n]

]

hj[n+ 1] = hj[n]− µsgn(e[n])

[
sgn(hj[n])θ̃k1,k2 [n] +

(
N2∑

i=−N1

|gi[n]|+
M∑
j=1

|hj[n]|

)
∂ỹk1,k2
∂hj

[n]

]
(5)

where sgn(·) represent the sign function. gi[n] and hj[n] are the ith and jth filter’s weights
iteration at the nth and µ > 0 is the step-size parameter.

It is shown in [6] that the partial derivative of ỹ(n) with respect to gi, hj are respectively,

∂θ̃k1,k2
∂gi

= −

k21sgn(gi)(θ̃ − sgn(gi)xi)

[k21 + |gi|(sgn(gi)xi − θ̃)2]2
N2∑

i=−N1

|gi|
k21 − |gi|(sgn(gi)xi − θ̃)2

[k21 + |gi|(sgn(gi)xi − θ̃)2]2
+

M∑
j=1

|hj |
k22 − |hj |(sgn(hj)dj − θ̃)2

[k22 + |hj |(sgn(hj)dj − θ̃)2]2

(6)



∂θ̃k1,k2
∂hj

= −

k22sgn(hj)(θ̃ − sgn(hj)dj)

[k22 + |hj |(sgn(hj)dj − θ̃)2]2
N2∑

i=−N1

|gi|
k21 − |gi|(sgn(gi)xi − θ̃)2

[k21 + |gi|(sgn(gi)xi − θ̃)2]2
+

M∑
j=1

|hj |
k22 − |hj |(sgn(hj)dj − θ̃)2

[k22 + |hj |(sgn(hj)dj − θ̃)2]2

(7)

5 SIMULATION RESULTS

This section develops computer simulation examples involving the design of a bandpass filter.
Considering a three tones signal s[n] =

∑3
k=1 ak sin(2πfkn) with amplitudes a1 = 3, a2 = 1 and

a3 = 0, 6, Nyquist sample frequency of 1kHz, normalized frequencies f1 = 0, 02, f2 = 0, 09 and f3 =
0, 2. The desired signal d[n] is represented by the central frequency signal d[n] = a2 sin(2πf2n).
The additive noise that contaminates the input signal is modeled by α-stable noise with α = 0, 8
and γ = 0, 1. In this simulation we want to design 82 taps RWMy filter with N1 = 25, N2 = 27 and
M = 30 and compare its performance to those yielded by FIR, IIR and nonrecursive WMy filter
designed for the same filtering task with 82 parameters. The FIR and IIR filter taps are designed
using the fir1 and yulewalk Matlab functions, respectively, with cutoff normalized frequencies of
fc1 = 0.05 and fc2 = 0.13. The nonrecursive WMy is designed through the algorithm proposed in
[4] with k1 = 0, 57. Furthermore, the scaled RWMy filter is designed using the proposed adaptive
approach, expressions (5), (6) and (7) with µ(n) = 0, 001 for n < 100, a step-size function as
µ(n) = 0, 001 exp(−n/1000) for n > 100 and k1 = k2 = 0, 57. The results of filtering the signal
x[n] = s[n] + η[n] with the FIR, IIR, WMy and RWMy filters are shown in Fig. 3.

In all representations of Fig. 3 involve a clean first half, or without noise, and the last part
with α-stable noise. Figure 3(a) shows the input signal to the filtering frameworks and the desired
signal in Fig. 3(b). From Fig. 3(c) and 3(d), it can be seen it the good performance of linear
representations to a clean signal, but the poor performance to a corrupted heavy-tailed noise of
input. Finally, the weighted myriad filter shown in figure 3(e) allows a good rejection of input
noise but with a strong low pass characteristic. However, it is the scaled approach, figure 3(f),
which offers the best estimation and the most similar output to a desired signal.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

(b)

Figure 2: Band Pass Filter. (a) Error. (b) Weights: g15, h5 and g25.
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Figure 3: Design of a Band Pass Filter. (a) Input corrupted signal. (b) Desired signal (c) FIR
filter output (d) IIR filter output (e) Nonrecursive WMy filter output (f) RWMy filter output.

Thus, the performance of the scaled framework is leaded by the convergency of the parameters
presented in the figure 2. Figure 2(a) shows the minimization of the equation error formulation
presented in equation (4). Likewise, figure 2(b) represent the adaptability of the parameters g15,
h5 and g25 in decremented order, respectively.
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